Использование генетической информации в процессах жизнедеятельности. Роль РНК в реализации наследственной информации
Страница 3

Информация » Структурно-функциональная организация генетического материала » Использование генетической информации в процессах жизнедеятельности. Роль РНК в реализации наследственной информации

Рис.28. Соединение инозина водородными связями с тремя различными азотистыми основаниями Водородные связи обозначены точками

Установлено также существование нескольких видов тРНК, способных соединяться с одним и тем же кодоном. В результате в цитоплазме клеток встречается не 61 (по количеству кодонов), а около 40 различных молекул тРНК. Этого количества достаточно, чтобы транспортировать 20 разных аминокислот к месту сборки белка.

Наряду с функцией точного узнавания определенного кодона в мРНК молекула тРНК осуществляет доставку к месту синтеза пептидной цепи строго определенной аминокислоты, зашифрованной с помощью данного кодона. Специфическое соединение тРНК со "своей" аминокислотой протекает в два этапа и приводит к образованию соединения, называемого аминоацил-тРНК (рис.29).

Рис.29. Присоединение аминокислоты к соответствующей тРНК:

I - 1-й этап, взаимодействие аминокислоты и АТФ с выделением пирофосфата;

II - 2-й этап, присоединение адепилированной аминокислоты к 3'-концу РНК

На первом этапе аминокислота активируется, взаимодействуя своей карбоксильной группой с АТФ. В результате образуется адепилированная аминокислота.

На втором этапе это соединение взаимодействует с ОН-группой, находящейся на 3'-конце соответствующей тРНК, и аминокислота присоединяется к нему своей карбоксильной группой, высвобождая при этом АМФ. Таким образом, этот процесс протекает с затратой энергии, получаемой при гидролизе АТФ до АМФ.

Специфичность соединения аминокислоты и тРНК, несущей соответствующий антикодон, достигается благодаря свойствам фермента аминоацил-тРНК-синтетазы. В цитоплазме существует целый набор таких ферментов, которые способны к пространственному узнаванию, с одной стороны, своей аминокислоты, а с другой - соответствующего ей антикодона тРНК (рис.3.30). Наследственная информация, "записанная" в молекулах ДНК и "переписанная" на мРНК, расшифровывается в ходе трансляции благодаря двум процессам специфического узнавания молекулярных поверхностей. Сначала фермент аминоацил-тРНК-синтетаза обеспечивает соединение тРНК с транспортируемой ею аминокислотой. Затем аминоацил-тРНК комплементарно спаривается с мРНК благодаря взаимодействию антикодона с кодоном. С помощью системы тРНК язык нуклеотидной цепи мРНК. транслируется в язык аминокислотной последовательности пептида (рис.30).

Рибосомная РНК (рРНК). Рибосомный цикл синтеза белка. Процесс взаимодействия мРНК и тРНК, обеспечивающий трансляцию информации с языка нуклеотидов на язык аминокислот, осуществляется на рибосомах. Последние представляют собой сложные комплексы рРНК и разнообразных белков, в которых первые образуют каркас. Рибосомные РНК являются не только структурным компонентом рибосом, но и обеспечивают связывание их с определенной нуклеотидной последовательностью мРНК. Этим устанавливаются начало и рамка считывания при образовании пептидной цепи. Кроме того, они обеспечивают взаимодействие рибосомы и тРНК. Многочисленные белки, входящие в состав рибосом наряду с рРНК, выполняют как структурную, так и ферментативную роль.

Рис.30. Схема трансляции генетического кода: I - присоединение аминокислоты (триптофана) к соответствующей тРНК с помощью фермента аминоацил-тРНК-синтетазы; II - присоединение тРНК, несущей свою аминокислоту, к мРНК благодаря связыванию ее антикодона с кодоном мРНК

Рибосомы про- и эукариот очень сходны по структуре и функциям. Они состоят из двух субчастиц: большой и малой. У эукариот малая субчастица образована одной молекулой рРНК и 33 молекулами разных белков. Большая субчастица объединяет три молекулы рРНК и около 40 белков. Прокариотические рибосомы и рибосомы митохондрий и пластид содержат меньше компонентов.

В рибосомах имеется две бороздки. Одна из них удерживает растущую полипептидную цепь, другая - мРНК. Кроме того, в рибосомах выделяют два участка, связывающих тРНК. В аминоацильном, А-участке размещается аминоацил-тРНК, несущая определенную аминокислоту. В пептидильном, П-участке располагается обычно тРНК, которая нагружена цепочкой аминокислот, соединенных пептидными связями. Образование А - и П-участков обеспечивается обеими субчастицами рибосомы.

В каждый момент рибосома экранирует сегмент мРНК протяженностью около 30 нуклеотидов. При этом обеспечивается взаимодействие только двух тРНК с двумя расположенными рядом кодонами мРНК (рис.31).

Страницы: 1 2 3 4 5


Другие статьи:

Представители семейства Fabaceae как источники биофлаваноидов. Астрагал серпоплодный - Astragalus falcatus L
Описание. Астрагал серпоплодный (Astragalus falcatus L.) - многолетнее травянистое растение семейства бобовые - Fabaceae (Leguminosae) высотой 45-100 см. Стебли прямостоячие, мелкобороздчатые, покрыты прижатыми черно-белыми волосками. Ли ...

Разложение трудноразлагаемых веществ
Плесневые грибы в качестве источника углерода могут использовать такие трудноразлагаемые вещества, как целлюлоза, крахмал, лигнин, пектиновые вещества, нефть, пестициды. Разложение целлюлозы. Основными источниками целлюлозы для грибов в ...

Результаты работы
Нами были обнаружены: 1) бактерии, 2) плесневые грибы, 3) актиномицеты. Таблицы прилагаются. 1) Бактерии : кокки, стафилококки, и палочковидние бактерии были обнаружены на руках, в зубном налёте и слюне. Кокки – шаровидные бактерии. Мик ...