Электрическое оружие и электролокаторыСтраница 1
На электрических рыбах впервые достоверно установили возможность выработки электричества животными, на них Фарадей показал, что электричество животных ничем не отличается от электричества гальванических элементов или электрических генераторов. Как же устроены электрические органы рыб?
Основу этих органов составляют столбики из плоских клеток, лежащих друг на друге, как пары медь – цинк в вольтовом столбе или как стопка монет, К одной поверхности каждой клетки подходит нервное окончание. Когда орган находится в покое, обе стороны каждой клетки имеют одинаковый потенциал и ток через орган не идет, Когда же по всем нервным волокнам одновременно приходят импульсы, постсинаптическая мембрана резко повышает свою проницаемость к ионам и потенциал на ней падает до нуля. Это приводит к возникновению тока, текущего через клетку. Все клетки столбика соединены последовательно и поэтому их потенциалы суммируются, как в последовательно соединенных гальванических элементах. Такое объяснение дал работе электрических органов рыб создатель мембранной теории биопотенциалов
Ю. Бернштейн в своей книге «Электробиология». Это объяснение в своей основе оказалось верным, а для некоторых электрических рыб и вполне точным. Что касается электрического угря, то у него мембрана той стороны клетки, на которую действует синапс, оказалась электрически возбудимой, так что при приходе нервного импульса она не просто снижает свой потенциал до нуля, а перезаряжается, что обеспечивает более высокую разность потенциалов, генерируемую каждой клеткой. У скатов и звездочетов клетки электрических органов таковы, что ни одна из их мембран не способна генерировать импульсы.
Читатель уже знает, что одиночная клетка обладает ПП порядка 60 мВ и даже при возбуждении возникающий ПД имеет амплитуду всего порядка 120 мВ. Между тем*' электрический угорь умеет создавать напряжение 800 – 900 В, а нильская щука и нильский сом – напряжение 200–350 В. Как говорилось, это обеспечивается последовательным соединением многих клеток. У электрического угря последовательно соединены более 6 000 клеток,
Однако задача электрического органа состоит не в том, чтобы создать возможно большую Э.Д.С. Дело в том, что часть Э.Д.С. всегда «теряется» на внутреннем сопротивлении источника. А электрический орган должен обеспечивать возможно большую разность потенциалов в наружной среде. Ясно, что чем большую силу тока обеспечит электрический орган, тем больше будет и падение напряжения в наружной среде. Рассмотрим эту проблему более подробно.
Сила тока, создаваемого электрическими органами и текущего через воду, по закону Ома для всей цепи равна: / = E/. Если у нас имеется много гальванических элементов, то их можно соединить либо последовательно, либо параллельно, либо смешанным образом, образуя «столбики» из последовательно соединенных элементов и соединяя эти «столбики» параллельно друг другу. Пусть в нашем распоряжении имеется ограниченное число элементов – п. Пусть сопротивление наружной среды задано и равно R, а внутреннее сопротивление элемента равно г и его э. д. с. равна Е. Как выгоднее соединить элементы, чтобы получить максимальную силу тока в цепи, а значит и максимальное падение напряжения на внешнем сопротивлении? Давайте будем соединять в один столбик х элементов, тогда число столбиков будет равно п/х. Общая э. д. с. такой системы будет равна Ех. Внутреннее сопротивление одного столбика будет равно гх, а полное внутреннее сопротивление всей системы в nix раз меньше, т.е. равно гх2/п. Тогда для силы тока мы получим выражение, Это выражение имеет максимум, когда гхг1п = R, т.е. когда внутреннее сопротивление всей системы равно внешнему.
А теперь посмотрим, в какой мере законы физики влияли на ход эволюции электрического органа. Для пресноводных рыб сопротивление окружающей среды весьма велико и для достижения максимального эффекта необходимо увеличивать х, т.е. число последовательно соединенных элементов. Поэтому электрический угорь – обитатель болот Южной Америки – имеет электрический орган, клетки которого в основном соединены последовательно, в то время как столбиков у него мало. Совсем другая ситуация у ската Торпедо, обитателя Средиземного моря, ведь сопротивление соленой морской воды относительно мало, И в электрическом органе ската клетки соединены совсем иначе: последовательно соединены всего 400 клеток, зато число параллельно соединенных столбиков велико. В результате электрический орган ската создает силу тока порядка 50 А, так что падение напряжения даже в соленой воде оказывается достаточно заметным, порядка 50 В, Таким образом, общий ход эволюции электрических органов вполне соответствует ожиданиям физика.
Мы видим, что морским электрическим рыбам важно сделать внутреннее сопротивление своего генератора как можно ниже, для этого они и соединяют так много столбиков параллельно. Но есть и еще один способ снизить это сопротивление – снизить сопротивление мембран каждой клетки. Оказывается, эволюция использует и этот способ. У одной мембраны клеток органа, той, на которой находится синапс, сопротивление при возбуждении становится низким, так как в ней открываются многочисленные ионные каналы, а сопротивление противоположной мембраны тоже относительно невелико за счет ее большой площади: она вся покрыта складками, выростами и т.д.
Другие статьи:
Сцепленное наследование признаков
Т. Морган изучал наследование различных признаков, находящихся в одной хромосоме. В качестве объекта для генетических исследований была выбрана плодовая мушка дрозофила. Этот объект оказался более удобным по следующим причинам: возобновле ...
IL-7
Интерлейкин-8 ...
Метод определения концентрации малонового диальдегида в сыворотке крови
Концентрацию малонового диальдегида определяли по методу Uchiyama M., Mihara M. [75]. К 3 мл 1,4 % ортофосфорной кислоты добавляли 0,25 мл сыворотки крови, затем приливали 1 мл 0,5 % раствора тиобарбитуровой кислоты и помещали в кипящую в ...