Функции хлоропластов.
Хлоропласты- это структуры, в которых осуществляются фотосинтетические процессы, приводящие в конечном итоге к связыванию углекислоты, к выделению кислорода и синтезу сахаров.
Характерным для хлоропластов является наличие в них пигментов хлорофиллов, которые и придают окраску зеленым растениям. При помощи хлорофилла зеленые растения поглощают энергию солнечного света и превращают её в химическую. Поглощение света с определённой длиной волны приводит к изменению в структуре молекулы хлорофилла, при этом она переходит в возбуждённое, активированное состояние. Освобождающаяся энергия активированного хлорофилла через ряд промежуточных этапов передаётся определённым синтетическим процессам, приводящим к синтезу АТФ и к восстановлению акцептора электронов НАДФН (никотинамидадениндинуклеотид-фосфат) до НАДФ*Н, которые тратятся в реакции связывания СО2 и синтезе сахаров.
Суммарная реакция фотосинтеза может быть выражена следующим образом:
nCO2+ nH2O—(CH2O)n+nO2
Таким образом, главный итоговый процесс здесь- связывание двуокиси углерода с использованием воды для образования различных углеводов и для выделения кислорода. Молекула кислорода, который выделяется в процессе фотосинтеза у растений, образуется за счёт гидролиза молекулы воды. Следовательно, процесс включает в себя процесс гидролиза воды, которая служит одним из источников электронов или атомов водорода. Биохимические исследования показали, что процесс фотосинтеза представляет собой сложную цепь событий, заключающую в себе 2 стадии: световую и темновую. Первая, протекающая только на свету, связанная с поглощением света хлорофиллами и с проведением фотохимической реакции (реакция Хилла). Во второй фазе, которая может идти в темноте, происходят фиксация и восстановление СО2, приводящие к синтезу углеводов.
В результате световой фазы осуществляются фотофосфорилирование, синтез АТФ из АДФ и фосфата с использованием цепи переноса электронов, а также восстановление кофермента НАДФ в НАДФН, происходящее при гидролизе и ионизации воды. В этой фазе фотосинтеза энергия солнечного света возбуждает электроны в молекулах хлорофилла, которые расположены в мембранах тилакоидов. Эти возбуждённые электроны переносятся по компонентам окислительной цепи в тилакоидной мембране, подобно тому как электроны транспортируются по дыхательной цепи в мембране митохондрий. Энергия, освобождающаяся при таком переносе электронов, используется для перекачивания протонов через тилакоидную мембрану внутрь тилакоидов, что приводит к возрастанию разности потенциалов между стромой и пространством внутри тилакоида. Как и в мембранах крист митохондрий, в мембранах тилакоидов встроены молекулярные комплексы АТФ-синтетазы, которые начинают затем транспортировать протоны обратно в матрикс хлоропласта, или строму, и параллельно этому фосфорилировать АДФ, т. е. синтезировать АТФ.
Таким образом, в результате световой фазы происходят синтез АТФ и восстановление НАДФ, которые затем используются при восстановлении СО2, в синтезе углеводов уже в темновой фазе фотосинтеза.
В темновой (не зависящей от потока фотонов) стадии фотосинтеза за счет восстановленного НАДФ и энергии АТФ осуществляется связывание атмосферного СО2, что приводит к образованию углеводов. Процесс фиксации СО2 и образования углеводов состоит из многих этапов, в которых участвует большое число ферментов (цикл Кальвина). Биохимическими исследованиями показано, что ферменты, участвующие в темновых реакциях, содержатся в водорастворимой фракции хлоропластов, содержащей компоненты матрикса-стромы этих пластид.
Процесс восстановления СО2 начинается с его присоединения к рибулозодифосфату-углеводу, состоящему из пяти атомов углерода, с образованием короткоживущего С6-соединения, которое сразу распадается на два С3-соединения, на две молекулы глицерид-3-фосфата.
Именно на этом этапе при карбоксилировании рибулозодифосфата и роисходит связывание СО2. Дальнейшие реакции превращения глицерид-3-фосфата приводят к синтезу различных гесоз и пентоз, к регенерации рибулозодифосфата и к его новому вовлечению в цикл реакций связывания СО2. В конечном счёте в хлоропласте из шести молекул СО2 образуется одна молекула гексозы. Для этого процесса требуется 12 молекул НАДФН и 18 молекул АТФ, поступающих из световых реакций фотосинтеза. Образовавшийся в результате темновой реакции фруктоза-6-фосфат даёт начало сахарам, полисахаридам (крахмал) и галактолипидам. В строме хлоропластов, кроме того, из части глицерид-3-фосфата образуются жирные кислоты, аминокислоты и крахмал. Синтез сахарозы завершается в цитоплазме.
В строме хлоропластов происходит восстановление нитрттов до аммиака за счёт энергии электронов, активированных светом; в растениях этот аммиак служит источником азота при синтезе аминокислот и нуклеотидов.
Другие статьи:
Думайте сами, решайте сами...
Что же в этой ситуации делать обычному покупателю, стоит ли бояться генетически измененных продуктов? Вот мнение генерального директора Национального фонда защиты потребителей академика А. Я. Калинина:
- Сейчас 90% экспорта трансгенных п ...
Строение мозга
Головной мозг, encephalon (cerebrum), с окружающими его оболочками находится в полости мозгового черепа. Выпуклая верхнелатеральная поверхность головного мозга по форме соответствует внутренней вогнутой поверхности свода черепа. Нижняя по ...
Влияние экологических условий на рост
микромицетов. Особенности
роста микроскопических грибов в стандартных условиях культивирования
А.Е. Ивановой (1999) было исследовано формирование микроколоний из двух типов колониеобразующих единиц (при размножении спорами и фрагментами мицелия) в стандартных для почвенно–микробиологических анализов условиях – на среде Чапека при 2 ...